

Institute of Energy and Mechanical Engineering named after A. Burkitbayev Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 6B07115 «Technological machines and equipment (by industry)»

Code and classification of the	6B07 «Engineering, manufacturing and civil
field of education:	engineering»
Code and classification of training	6B071 «Engineering and engineering
directions:	trades»
Group of educational programs:	B064 – «Mechanics and metal working»
Level based on NQF:	Level 6
Level based on IQF:	Level 6
Study period:	4 years
Amount of credits:	240

Almaty 2024

Educational program 6B07115 «Technological machines and equipment (by industry)» was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # 12 dated «22» April 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council Minutes # 6 dated «19» April 2024

Educational program 6B07115 «Technological machines and equipment (by industry)» was developed by Academic committee based on direction 6B071 «Engineering and engineering trades»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:		•	
Yelemessov	Candidate of	Director of the	KazNRTU	A
Kassym	Technical Sciences,	Institute of	named after K.I.	A
	Professor	Energy and	Satbayev	161
		Mechanical		04
· · · · · ·		Engineering		
Teaching staff:				
Kaliev	Candidate of	Head of the	KazNRTU	
Bakytzhan	Technical Sciences,	department	named after K.I.	\mathcal{N}
	Associate Professor	"Technological	Satbayev	(TXD)
		machines and		20 mg
		equipment"		l
Bortebayev	Candidate of	Associate	KazNRTU	nP
Saiyn	Technical Sciences,	Professor	named after K.I.	CA8
			Satbayev	0
Employers:		*2		Λ
Stvaev Nurzhan		Chairman of the	Alageum Group	
		Management	LLP	$\cap I$
		Board of		(N)
	1	Alageum Group		
Students				l
Moshanov Kanat		2nd year doctoral	KazNRTU	29 /
		student	named after K.I.	las
			Satbayev	

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	6
3.	Requirements for the evaluation of educational program learning	6
	outcomes	
4.	Passport of educational program	9
4.1.	General information	9
4.2.	Relationship between the achievability of the formed learning	12
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of educational program	51

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev– NCJS «Kazakh National Research Technical University named after K.I. Satbayev»;

SOSE – State obligatory standard of education of the Republic of Kazakhstan; EP - educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

- UC university component;
- CC component of choice;
- NQF National Qualifications Framework; S
- QF Sectoral Qualifications Framework;
- LO learning outcomes;

KC – key competencies

1. Description of educational program

The field of professional activity of the Bachelor of the educational program "Operational and service Engineering" includes:

- sections of science and technology containing a set of tools, techniques, methods and methods of human activity aimed at creating competitive engineering products and based on the use of modern methods and means of design, calculation, mathematical, physical and computer modeling;

- organization and execution of works on creation, installation, commissioning, maintenance, operation, diagnostics and repair of technological machines and equipment, development of technological processes for the production of parts and assemblies.

The objects of the bachelor 's professional activity are:

- technological machines and equipment of various complexes;

- technological equipment and means of mechanization and automation of technological processes;

- production technological processes, their development and development of new technologies;

- installation and repair of technological machines and equipment;

- means of information, metrological, diagnostic and management support of technological systems to achieve the quality of manufactured products;

- means of testing and quality control of technological machines and equipment;

- technological processes of metal structures assembly;

- welding equipment and power supplies, assembly and welding devices;

- regulatory and technical documentation, standardization and certification systems, methods and means of testing and quality control of products.

The types of professional activity are:

- experimental research;

- design and analytical;

- production and technological;

- service and operational;

- installation and commissioning;

- organizational and managerial.

The subjects of the bachelor's professional activity are:

- technological machines and equipment; energy equipment;

- machine drive systems;

- motion control systems;

- operator's life support systems;

- structural and operational materials;

- equipment for manufacturing, testing and disposal of technological machines;

- equipment for maintenance and repair of technological machines;

- control and measuring devices for the manufacture and operation of machines;

- equipment for automating the working processes of machines;
- equipment for designing machines

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to provide comprehensive and high-quality training of competitive, highly qualified specialists ready to solve practical and theoretical tasks of professional activity in modern conditions based on the development of skills and abilities necessary for a future specialist

Tasks of EP:

- study of a cycle of general education disciplines to provide social and humanitarian education based on the laws of socio-economic development of society, history, modern information technologies, the state language, foreign and Russian languages;

- study of the cycle of basic disciplines providing knowledge of natural, general technical and economic disciplines as the basis of vocational education;

- the cycle of the main disciplines is aimed at studying the main theoretical aspects of technological machines, theoretical and practical methods, areas of human activity based on the creation of competitive technological machines and modern methods and means of human design, mathematical, physical and computer modeling of technological processes;

- study of disciplines that form the skills of planning and organizing research work, designing technologies and devices;

- familiarity with the technologies and equipment of enterprises at different stages of practical training;

- mastering the skills and abilities of laboratory research, technological calculations, selection and design of equipment using modern computer technologies and programs

3. Requirements for evaluating the educational program learning outcomes

The volume of the bachelor's degree program is 240 credits, regardless of the form of study, the educational technologies used, the implementation of the bachelor's program using the online form, the implementation of the bachelor's program according to an individual curriculum, including accelerated learning.

Descriptors of the level and scope of knowledge, skills, skills and competencies

A – knowledge and understanding:

A1 - The ability to logically represent the acquired knowledge and understanding of systemic relationships within disciplines, as well as interdisciplinary relations in modern science.

A2 - Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of production.

A3 - to carry out basic calculations of the main parameters of technological machines, to justify their choice depending on production levels.

C – application of knowledge and understanding

B1 - Independent development and promotion of various options for solving professional tasks using theoretical and practical knowledge

B2 - to put forward hypotheses for the acquisition of new knowledge necessary for daily professional activity and continuing education

B3 - based on basic knowledge, be able to adequately navigate in various situations

C – formation of judgments

C1 - on the basis of knowledge about economic laws, the formation of hypotheses, forecasting and planning of economic activity of the enterprise.

C2 - be able to work in a team, correctly defend your point of view, and offer new solutions.

C3 - skills of daily acquisition of new knowledge necessary for professional activity.

D – personal abilities

D1 - compliance with the norms of business ethics, possession of ethical and moral standards of behavior.

D2 - the ability to find a compromise, correlate your opinion with the opinion of the team

D3 - to know social and ethical values based on public opinion, traditions, customs, social norms and be able to navigate them in their professional activities.

Competencies upon completion of training

	General cultural competencies (GCC)
GCC 1	Ability to communicate orally and in writing in the state, Russian and foreign languages to solve problems of interpersonal and intercultural interaction
GCC 2	Understanding and practical use of healthy lifestyle norms, including prevention issues, the ability to use physical culture to optimize performance
GCC 3	The ability to analyze the main stages and patterns of the historical development of society for the formation of a civic position
GCC 4	The ability to use the basics of philosophical knowledge to form a worldview position
GCC 5	The ability to critically use the methods of modern science in practice
GCC 6	Awareness of the need and acquisition of the ability to independently study and improve their qualifications throughout their working life
GCC 7	Knowledge and understanding of professional ethical standards, proficiency in professional communication techniques
GCC 8	Ability to work in a team, tolerantly perceiving social, ethnic, confessional and cultural differences
GCC 9	The ability to use the basics of economic knowledge in various fields of activity
	General professional competencies (GPC)
GPC-1	The ability to acquire new knowledge with a high degree of independence using modern educational and information technologies
GPC-2	Possession of computer skills sufficient for professional activity with basic programming

GPC-3	Knowledge of the basic methods, methods and means of obtaining, storing, processing information, the
	ability to use modern technical means and information technologies using traditional information
	carriers, distributed knowledge bases, as well as information in global computer networks to solve
CDC 4	communication problems
GPC-4	conderstanding the essence and significance of information in the development of modern society, the ability to receive and process information from various sources, the willingness to interpret, structure
	and formalize information in a form accessible to others
GPC-5	Ability to solve standard tasks of professional activity on the basis of information and hibliographic
010.5	culture with the use of information and communication technologies and taking into account the basic
	requirements of information security
	Professional competencies (PC)
PC1	The ability to systematically study scientific and technical information, domestic and foreign experience
	in the relevant training profile
PC 2	The ability to take part in the preparation of scientific reports on the completed task and implement the
102	results of research and development in the field of technological machines and equipment
DC 2	Ability to participate in work on innovative projects using basic research methods
rC 5	Admity to participate in work on innovative projects using basic research methods
PC 4	Ability to model technical objects and technological processes using standard packages and computer-
101	aided design tools, willingness to conduct experiments according to specified methods with processing
	and analysis of results
PC 5	Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation
	to various forms and processes of technological processes
PC 6	The ability to independently master new equipment, technological and technical documentation, make
	adjustments to it in relation to operating conditions
PC 7	The ability to take part in the calculation and design of parts and assemblies of technological machines
	in accordance with the technical specifications and the use of standard design automation tools
PC 8	The ability to conduct patent research in order to ensure the patent purity of new design solutions and
	their patentability with the determination of indicators of the technical level of the designed products
PC 9	The ability to investigate and optimize the operating modes of technological machines during their
	operation
PC 10	The ability to conduct a preliminary feasibility study of design solutions
PC 11	The ability to design the technical equipment of workplaces with the placement of technological
	equipment, the ability to master the equipment being introduced
PC 12	The ability to participate in the work on fine-tuning and mastering of technological processes during the
	preparation of production of new products, to check the quality of installation and commissioning during
DC 12	testing and commissioning of new samples of products, assemblies and parts of manufactured products
PC 15	Additive to check the technical condition and residual file of technological equipment, organize preventive
	inspection and maintenance of technological machines and equipment
PC 14	The ability to carry out measures for the prevention of occupational injuries and occupational diseases,
	to monitor compliance with the environmental safety of the work carried out
PC 15	Ability to choose basic and auxiliary materials, methods of implementation of technological processes,
	to apply progressive methods of operation of technological equipment
PC 16	Master the basic methods of calculating the parameters of technological equipment, the methodology of
	their selection according to reference books and catalogs.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of the field of	6B07 « Engineering, manufacturing and civil engineering»
	education	
2	Code and classification of training	6B071 «Engineering and engineering trades»
	directions	
3	Educational program group	B064 – «Mechanics and metal working»
4	Educational program name	"Technological machines and equipment (by
		industry)"
5	Short description of educational	Educational program "Technological machines and
	program	equipment (by industry)" in the following industries:
		- metallurgical machinery and equipment;
		- mining machinery and equipment;
		- machinery and equipment of the oil and gas industry;
6	Purpose of EP	The purpose of the educational program is to provide
		comprehensive and high-quality training of
		competitive, highly qualified specialists ready to solve
		practical and theoretical tasks of professional activity
		in modern conditions based on the development of
7	Trues of ED	skills and abilities necessary for a future specialist
/	The level based on NOE	
0	The level based on IOE	6
9	Distinctive features of FP	
10	List of competencies of educational	OC 1 Communication skills
11	program	OC Basic literacy in natural sciences
	program	OC 3 General engineering competencies
		OC 4 Professional competencies
		OC 5. Engineering and computer competencies
		OC 6.Engineering and working competencies
		QC 7. Socio-economic competencies
		QC 8. Special professional competencies
12	Learning outcomes of educational	LO1: To use ethical and legal norms regulating the
	program	attitude of a person towards a person, society and the
		environment. Be able to practically apply the basic
		patterns and forms of regulation of social behavior,
		human and civil rights and freedoms in the
		development of social projects, demonstrating respect
		for people, tolerance to another culture, and
		willingness to maintain partnerships
		LO2: Apply modern methods for the development of
		low-waste, energy-saving technologies that ensure the
		possible consequences of accidents, catastrophos and
		natural disasters methods of rational use of raw
		materials energy and other types of resources
		LO3: Demonstrate knowledge of the branches of
		higher mathematics, physics and other natural sciences
		and apply them to solve engineering problems in the
		field of operation of technological machines.

LO4: Choose the main and auxiliary materials and
methods of implementation of the main technological
processes and apply progressive methods of operation
of technological equipment
LO5 Develop the procedure for installation and
commissioning during testing and commissioning of
new technological equipment. Assess the technical
condition and residual life of technological equipment,
organize preventive inspection and maintenance of
equipment using diagnostic devices, process
measurement results
LO6: Perform standardization work, technical
preparation for certification of technical means and
equipment, organize metrological support of
technological processes using standard quality control
methods
LO7:: Develop working design and technical
documentation, execute completed design work with
verification of compliance of the developed projects
and technical documentation with standards,
specifications and other regulatory documents
repair of technological machines and equipment for
integrated management and monitoring of industrial
production
LO9 : Apply standard calculation methods in the
design of parts and assemblies of technological
machines and welded structures. Use standard design
automation tools in calculations
LO10: To use the principles of formulation and
algorithms for solving research tasks in order to
systematically develop knowledge about project
management. To evaluate the technical and economic
performance of industrial enterprises
LOII: Prepare applications for equipment and spare
parts, prepare technical documentation for equipment
repairs, analyze and monitor the technical condition of
has a make management decisions
I O12: Analyze and choose the main methods
methods and means of obtaining storing processing
information is able to use modern technical means and
information technologies using traditional information
carriers, distributed knowledge bases, as well as
information in global computer networks to solve
communication problems
LO13:: Demonstrate knowledge and skills in the field
of dynamics, reliability and technical diagnostics of
technological machines of main and auxiliary
production
LO14 Perform strength calculations and calculations
of machine structures, design, adjust, repair equipment

		of various types, solve problems of efficient operation of mechanical equipment, as well as operate any complex of equipment in the technological processes of mining, metallurgical and oil and gas industries
13	Education form	full
14	Period of training	4 years
15	Amount of credits	240
16	Languages of instruction	Kazakh/Russian
17	Academic degree awarded	Bachelor of Engineering and Technology
18	Developer(s) and authors	Academic Affairs Committee

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N⁰			Shout degemintion of the	Numbor	Generated learning outcomes (codes)													
	Name of the discipl	ine	discipline	of credits	L01	LO2	LO	LO	LO	LO	LO	L08	LO	LO10	LO11	LO12	LO13	LO14
				01 01 04105			3	4	5	6	7		9					
			Cycle of ge	neral edu	catio	1 disc	iplin	les										
	L		Re	quired co	mpon	ent	1	1	1	1	1			1	1	1	1	1
1	English language	Eng	lish is a discipline of the	5	v													
		gene	eral education cycle. After															
		dete	rmining the level (according to															
		the 1	esults of diagnostic testing or															
		IEL'	TS results), students are divided															
		into	groups and disciplines. The															
		nam	e of the discipline corresponds															
		to th	e level of English proficiency.															
		Dur	ing the transition from level to															
		leve	l, the prerequisites and post-															
		prer	equisites of the discipline are															
		obse	erved															
2	Kazakh (Russian)	The	socio-political, socio-cultural	5	v													
	language	sphe	eres of communication and															
		func	tional styles of the modern															
		Kaz	akh (Russian) language are															
		cons	sidered. The course highlights															
		the s	specifics of scientific style in															
		orde	r to develop and activate															
		prof	essional and communicative															
		skill	s and abilities of students,															
		allo	ws students to practically															
		mas	ter the basics of scientific style															
		and	develops the ability to perform					1										
		strue	ctural and semantic analysis of					1										
		the t	ext															

2		Demained as we are at The tests of	5							
3	Information and	Required component. The task of	þ	V						
	communication	studying the discipline is to acquire								
	technologies (in English)	theoretical knowledge about								
		information processes, about new								
		information technologies, local and								
		global computer networks, methods								
		of information protection; to								
		acquire skills in using text editors								
		and tabular processors; to create								
		databases and various categories of								
		application programs								
4	History of Kazakhstan	The course studies historical events.	5	v						
		phenomena, facts, processes that								
		took place on the territory of								
		Kazakhstan from ancient times to								
		the present day. The sections of the								
		discipline include: the steppe								
		empire of the Turks: early feudal								
		states on the territory of								
		Kazakhstan [.] Kazakhstan during the								
		Mongol conquest (XIII century)								
		medieval states in the XIV-XV								
		centuries. The enoch of the Kazakh								
		Khanate XV-XVIII centuries								
		Kazakhstan as part of the Bussian								
		Empire Kezekhsten during the								
		Creat Detrictic War, during the								
		Great Faillouic war, during the								
		the present steps								
5		Dilles en tra fermer en delessalene	5							
5	Philosophy	Philosophy forms and develops	כ	V						
		critical and creative thinking,								
		worldview and culture, provides								
		knowledge about the most general								
		and fundamental problems of								

		existence and gives them a									
		methodology for solving various									
		theoretical and practical issues.									
		Philosophy expands the horizon of									
		vision of the modern world, forms									
		citizenship and patriotism,									
		promotes self-esteem, awareness of									
		the value of human existence. It									
		teaches you to think and act									
		correctly, develops practical and									
		cognitive skills, helps you to search									
		and find ways and ways of living in									
		harmony with yourself, society, and									
		the world around you									
6	Module of socio-political	The study of the course contributes	3	v							
	knowledge (sociology,	to the formation of students'									
	political science)	theoretical knowledge about society									
		as an integral system, provides the									
		political aspect of training a highly									
		qualified specialist on the basis of									
		modern world and domestic									
		political thought. The discipline is									
		designed to improve the quality of									
		both general humanitarian and									
		professional training of students.									
		Knowledge in the field of sociology									
		and political science is necessary to									
		understand political processes, to									
		form a political culture, to develop									
		a personal position and a clearer									
		understanding of the measure of									
		one's responsibility									
7	Module of socio-political	The module of socio-political	5	v			Τ				
	knowledge (cultural	knowledge (cultural studies,									

	studies, psychology)	psychology) is designed to											
		familiarize students with the											
		cultural achievements of mankind,											
		to understand and assimilate the											
		basic forms and universal patterns											
		of formation and development of											
		culture. During the course of											
		cultural studies, general problems											
		of the theory of culture, leading											
		cultural concepts, universal patterns											
		and mechanisms of formation and											
		development of culture, the main											
		historical stages of the formation											
		and development of Kazakh culture											
		are considered. The regularities of											
		the emergence, development and											
		functioning of mental processes,											
		states, properties of a person											
		engaged in a particular activity, the											
		regularities of the development and											
		functioning of the psyche as a											
		special form of vital activity are											
		also studied											
		Cycle of get	neral edu	cation	ı disci	plin	es	 					
		Со	mponent	of ch	oice			 	 		1		
8	Fundamentals of anti-	_to form an informed	5	v									
	corruption culture	understanding of the problem of											
		corruption in society, to develop											
		anti-corruption skills, as well as to											
		educate civic responsibility and											
		ethical principles. Contents_ basic											
		theoretical and practical knowledge											
		about corruption, analysis of											
		corruption phenomena, strategies											

					1	1	1	1				
		and methods of combating them,										
		tormation of adequate behavior and										
		values aimed at creating an honest										
		and open society										
9	Fundamentals of	The purpose of studying the	5							v		
	economics and	discipline is to familiarize students										
	entrepreneurship	with the basic principles of										
		economic theory and										
		entrepreneurial activity. The course										
		includes the study of basic										
		economic concepts, market										
		mechanisms, management tools and										
		key aspects of entrepreneurship,										
		such as starting and managing a										
		business, analyzing the market										
		environment, financial planning,										
		assessing risks and developing										
		development strategies.										
10	Ecology and life safety	The purpose of the discipline: to	5	v								
		acquaint students with the tasks of										
		ecology as a science, its sections										
		and conclusions that find										
		application in various fields of										
		practical activity. Brief description:										
		ecological terms, laws of										
		functioning of natural systems are										
		considered; environmental										
		monitoring and management in the										
		field of its security; sources of air,										
		water, soil pollution and ways to										
		solve environmental problems;										
		emergency situations of natural and										
		man-made nature.										

11	Fundamentals of	Purpose: to form a systematic	5	[X/	xc	
11	scientific research	understanding of the methodology	5				v	v	
	methods	of scientific cognition among							
	methous	students: to develop scientific							
		thinking skills: to form experience							
		in organizing and conducting							
		acientific research: to develop a							
		competence based approach to the							
		competence-based approach to the							
		and use of methods and fulles for							
		conducting research in the field of							
		mechanical engineering, related							
		processes and their technologies.							
		Contents: stages of scientific							
		research, terms and concepts,							
		methods of conducting an							
		experiment, mathematical methods							
		of processing research results.							
		Concepts of engineering, laboratory							
		and industrial experiment, bench							
		research.					_		
12	Basics of Financial	Purpose: acquiring knowledge and	5				v		
	Literacy	skills in the field of personal							
		finance management, including							
		budget planning, use of financial							
		instruments, taxation and							
		investments to ensure effective							
		management and increase of own							
		funds. Contents: as part of the							
		course, students will master the							
		basics of financial management,							
		learn how to create a budget, use							
		various financial products, plan and							
		pay taxes. They will also gain							
		practical skills in analyzing							

		financial information and choosing									
		Cvcl	e of basic	disci	olines						
		Ŭni	versity c	ompo	nent						
13	Mathematics I	Purpose: to introduce students to the fundamental concepts of linear algebra, analytical geometry and mathematical analysis. To form the ability to solve typical and applied problems of the discipline. Contents_ Elements of linear algebra, vector algebra and analytical geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial derivatives. The extremum of a function of two variables.	5			V					
14	Physics	Purpose: To form ideas about the modern physical picture of the world and scientific worldview, the ability to use knowledge of fundamental laws, theories of classical and modern physics. Contents_ physical fundamentals of mechanics, fundamentals of molecular physics and thermodynamics, electricity and magnetism, vibrations and waves, optics and fundamentals of quantum physics.	5			v					

15	Mathematics II	Purpose: To teach students	5		v							
		integration methods. To teach you			·							
		how to choose the right method for										
		finding the primitive. To teach how										
		to apply a certain integral to solve										
		practical problems. Contents										
		integral calculus of the function of										
		one and two variables, series										
		theory. Indefinite integrals,										
		methods of their calculation.										
		Certain integrals and applications										
		of certain integrals. Improper										
		integrals. Theory of numerical and										
		functional series, Taylor and										
		Maclaurin series, application of										
		series to approximate calculations										
16	Engineering and	Purpose: formation of knowledge	5				,	v				
	computer graphics	of drawing construction, skills to										
		read and develop graphic										
		documentation. The student must										
		apply the achievements of modern										
		computer technology in all areas of										
		the transport industry. Contents_										
		ESCD standards. Graphic										
		primitives. Methods and properties										
		of orthogonal projection. The										
		Monge plot. GOST 2.305-68.										
		Incisions. Axonometric projections.										
		Types of connections. Polyhedra.										
		Sketches of details. Detailing.										
		Ways to transform a drawing.										
		Creating a 3M complex solid-state										
		object in the AutoCAD system,										

17	Training workshops	The course provides for the study of the main methods related to repair, repair and operation conditions of technological equipment, repair quality requirements, selection of necessary machinery and equipment and materials. This discipline is a course of choice for the training of mechanics. As a result of mastering the discipline, students gain practical skills in maintenance and repair of components and parts of technological equipment and apply	4			v			v		
		appropriate technical means and									
18	Fundamentals of the	The discipline is one of the	5						v		
10	specialty	disciplines of the component of	5						v		
	specially	choice, which is studied by future									
		representatives of the mechanic's									
		service. The course content allows									
		future mechanics to get an idea of									
		such a technically and									
		technologically complex industry.									
		During the study, students will be									
		introduced to the technological									
		processes and the main equipment									
		of the mining and metallurgical and									
		oil and gas industries, operational									
		and service industries of the									
		industry.									
19	Theoretical and applied	To involve students in the	5								v
	mechanics	development and solution of tasks									

		that halp bridge the gap between				1					
		that help blidge the gap between									
		scientific theory and engineering									
		practice. Contents_ Theoretical									
		mechanics, theory of mechanisms									
		and machines. Theoretical									
		mechanics deals with the general									
		laws of mechanical movements of									
		material bodies and the mechanical									
		interactions between them. In the									
		theory of mechanisms and									
		machines, general methods of									
		research, construction, and									
		kinematics of mechanisms and									
		machines are studied									
20	Basics of hydraulics and	The study of the course is aimed at	6		v					v	
	hydraulic drives of	forming a complex of knowledge of									
	technological machines	the basic laws of hydraulics; the									
	C C	ability to apply these laws to solve									
		practical computational problems;									
		possession of standard hydraulic									
		calculations and methods of									
		experimental research of hydraulic									
		systems. Application of knowledge									
		in the field of technical fluid									
		mechanics (hydraulics) for the									
		calculation of hydraulic pressure									
		systems hydraulic machines									
		hydraulic and pneumatic drives									
		widely used in industry. Complete									
		hydraulic calculation of various									
		hydraulic systems, hydraulic and									1
		nyuraune systems, nyuraune allu									1
		Obtaining the basics of knowledge									1
		in the field of hydroxilian									1
		in the field of hydraulics –									

												<u> </u>
		cheoretical fluid mechanics in the										
		field of hydraulic drives.										
21	Interchangeability,	Studying the basic laws and	5				V	v				
	standardization and	concepts of standardization and										
	technical measurements	interchangeability, methods and										
		means of controlling deviations of										
		the shape, roughness and waviness										
		of the surfaces of parts, the role of										
		standardization in improving the										
		quality of machines										
		Interchangeability binds in a single										
		whole design, production										
		technology and control products.										
		Standardization and unification of										
		parts and elements contribute to the										
		acceleration and cheapening of the										
		design and manufacture of										
		products										
22		The solution of the most important	5			v						
		technical problems associated with										
		the creation and development of the										
		most economical materials.										
		increasing the accuracy, reliability										
		and performance of mechanisms										
	Construction materials	and devices depends largely on the										
	processing machinery	development of materials science										
	and equipment	and technology for producing and										
	und equipment	processing materials concretization										
		of knowledge about the relationship										
		between the composition structure										
		and properties of materials used for										1
		management of the structure and										1
		properties of structural materials										1
		properties of siluctural materials.								1		1

23	Strength of materials	to independently calculate	5								10
23	Strength of materials	structural elements, machanisms	5			v					v
		and machine parts. Contents									
		Stretching and compression									
		Stresses in cross sections and									
		deformations of a straight rod									
		Machanical properties of materials									
		under tension and compression									
		Calculation of tangile and									
		calculation of tensile and									
		Compressive strength and suffness.									
		Geometric characteristics of flat									
		sections. Shear and torsion.									
		Calculation of strength and									
		torsional stiffness. The bend.									
		Normal and tangential bending									
2.1		stresses	-								
24		Assimilation of methods for	5		v	v					
		obtaining, converting, transferring									
		and using heat, which allows for the									
	Thermodynamics, heat	operation of technological									
	transfer and heat	machines and equipment saving									
	engineering equipment	fuel and energy resources,									
		intensifying technological									
		processes, identifying and using									
		thermal energy resources.									
25	Industrial economics	Purpose: To provide students with	5						v		
		an understanding of the basic									
		principles and factors affecting									
		industrial economics, including the									
		organization of production, the									
		competitiveness of enterprises, and									
		the impact of government policy.									
		Content: study the structure and									
		dynamics of industrial production,									

		analyze the main factors affecting the efficiency of enterprises, including technological innovation, factors of production and competition. Examination of the role of public policy in industrial development and industrial safety issues									
26	Bases of designing and details of cars	Purpose: to acquire knowledge of calculations and design of machine parts and assemblies, taking into account the criteria of strength, reliability and stability. Contents_ general principles of design and construction, construction of models and calculation algorithms for standard machine parts taking into account performance criteria, fundamentals of theory and methodology for calculating standard machine parts, computer technologies for designing assemblies and machine parts. Basic requirements for machine parts and assemblies	5				v	v			
27	Electrotechnics and Microelectronics	Electrical and magnetic circuits. Basic definitions, parameters and methods of calculation of DC electrical circuits. Analysis and calculation of linear AC circuits. Analysis and calculation of electrical circuits with nonlinear elements. Analysis and calculation of magnetic circuits.	5	v	v						

		Electromagnetic devices and electrical machines. Fundamentals of electronics and electrical measurements. The element base of modern electronic devices. Semiconductor elements. Electronic equipment power supply devices. Amplifiers of electrical signals. Electronic amplifiers and generators. Elements of pulse technology. Pulse and auto- generator devices. Fundamentals of digital and microelectronics. Microprocessor tools								
28	Fundamentals of Artificial Intelligence	Purpose: to familiarize students with the basic concepts, methods and technologies in the field of artificial intelligence: machine learning, computer vision, natural language processing, etc. Contents: general definition of artificial intelligence, intelligent agents, information retrieval and state space exploration, logical agents, architecture of artificial intelligence systems, expert systems, observational learning, statistical learning methods, probabilistic processing of linguistic information, semantic models, natural language processing systems	5						V	

29	The dynamics and durability of technological machines	Students study the criteria for calculating technological machines and structures for strength. To learn the formulation and analysis of calculation results, the ability to determine operating stresses, to master a number of accurate and approximate methods for determining the characteristics of operational loads, considering the bearing capacity of parts and structures as a random variable, to be able to calculate dynamic loads in drives and other parts of	4							v	V
		technological machines							 		
30	Reliability of technological machines	The course provides students with knowledge and skills that provide a creative approach to solving problems of reliability and durability of technological machines and equipment necessary to increase the level of automation, reduce huge repair costs from machine downtime, and ensure safety during equipment operation. When studying disciplines, students master the issues of ensuring the reliability and durability of technological equipment; principles of rational use of technical parameters of technological machines	5							v	
	1	Cycle	of basic	discipli	nes	<u> </u>		II			L
		Čon	nponent o	of choic	e						

31	Drilling machines and complexes	The construction of equipment for drilling wells for the purpose of oil and gas production, the device and the main directions of further development of drilling machines and systems in accordance with the trends of global technical progress. Evaluating the effectiveness of machinery and equipment for choosing a rational way of their operation The technical level, ways to improve the design, methods of operation of drilling machines and systems	5			v		Y		
32	Technological lines and complexes of metallurgical production	The course provides students with the necessary knowledge about the scale of metallurgical production and the continuity of its constituent processes, patterns of construction and trends in the development of technological lines of metallurgical production, necessary for production, design and research activities. Students' mastering of technologies for obtaining various metals, starting with enrichment and ending with metalworking processes by pressure, the structure of existing technological lines and complexes of metallurgical workshops and prospects for the development of metallurgical production, the principle of choosing machines and	5	V		v				

		mechanisms, determining the required number of them for lines and complexes of metallurgical workshops								
33	Mining technology	Prospects for the development of underground mining of mineral deposits. Mining and geological characteristics of mineral deposits. Basic information about mining in underground mining. The order and methods of ore extraction and the sequence of mining blocks. The main indicators of ore extraction. Losses and dilution of ore. Concepts about the mine field, mine. Stages of development of mine fields. Requirements for autopsy.	5	V			v			
34	Technological processes in the oil and gas industry	Training bachelors in the technology of well construction, well oil production, scientific understanding of the main technological processes and work in the oil and gas industry. Methods of opening productive objects; challenge inflow and development of wells; choice of methods of influence on the productive layer; choice of methods of impact on the bottomhole well zone; methods of operating wells; calculation of operating modes of the "well- reservoir" system.	5	V			v			

35	Legal regulation of intellectual property	Purpose: the goal is to form a holistic understanding of the system of legal regulation of intellectual property, including basic principles, mechanisms for protecting intellectual property rights and features of their implementation. Contents: The discipline covers the basics of IP law, including copyright, patents, trademarks, and industrial designs. Students learn how to protect and manage intellectual property rights, and consider legal disputes and methods for resolving them.	5	v							
36	Pumps, fans, compressors	The device is technologically important and large energy consumers in the industry: pumps, fans and compressors of various types, parameters, effective modes of their operation. Practically mastered the methods of design and installation of pumping stations, fan installations of the main ventilation. Piping networks, their device and installation, auxiliary equipment, ensuring efficient and safe operation of pumping, fan and compressor units are being studied.	5				V		V		
37	Internal combustion engines	Thermodynamic cycles internal combustion engines. The designs of internal combustion engines used in the oil and gas industry, the theory of working processes, the principles	5		v					V	

		of their work, the basic concepts and definitions, technical and economic indicators, designs of engine systems, the rules of their technical operation, maintenance and repair. The processes of compression, combustion and expansion. Calculation of parameters of the working mixture									
38	Auxiliary transport equipment of metallurgical shops	General information about mechano-transport equipment of non-ferrous metallurgy plants. Equipment warehouses bulk materials. The device and design of car dumpers. Silos and their closures. Feeder designs. Receptions equipment maintenance depending on its type and purpose. The main parameters of the mechanical mode. Purpose, device, principle of operation and features of operation of technological equipment of pyro-and hydrometallurgical production	5		x		V				
39	Technical audit	Analysis of operational documentation. Analysis of technical documentation for equipment installations. Analysis of technical documentation for vessels and apparatuses. Analysis of technical documentation for pipelines. Analysis of technical documentation for dynamic	5						v	v	

		equipment. Conducting a field										
		survey of equipment. Conducting a										
		field examination of blood vessels										
		and apparatuses. Conducting a field										
		survey of pipelines. Conducting a										
		field survey of dynamic equipment.										
		Analysis of corrosion-erosion wear										
		of equipment										
40		The main features and current state	5					v		v		
		of pipeline transportation of natural										
		gas. Modes and performance of gas										
		pumping units at compressor										
		stations. Features of the properties										
		and aerodynamics of currents in gas										
		pumping units. Used in the gas										
		industry types of centrifugal										
		feeders. Designs and characteristics										
		of the Central Natural Gas Center.										
		Methods for determining the										
		technical condition and power										
		consumption Gas pumping units										
	Gas-pumping units	with power transmission.										
41	Fundamentals of	Purpose: the goal is for students to	5	v		V	^					
	sustainable development	master the theoretical foundations										
	and ESG projects in	and practical skills in the field of										
	Kazakhstan	sustainable development and ESG,										
		as well as to develop an										
		understanding of the role of these										
		aspects in the modern economic										
		and social development of										
		Kazakhstan. Contents: introduces										
		the principles of sustainable										
		development and the										
		implementation of ESG practices in										

		Kazakhstan, includes the study of								
		national and international								
		standards, analysis of successful								
		ESG projects and strategies for								
		their implementation in enterprises								
		and organizations								
42		The organization of the process of	6				v		v	
		designing objects of technology, the								
		basic principles of construction and								
		structure of computer-aided design								
		systems, the composition and types								
		of provision of computer-aided								
	Computer-aided design	design systems, analysis of								
	of technological	workflows of technological								
	machines	machines using computers,								
		elements of computer-aided design								
		systems of technological machines.								
		The structure and classification of								
		computer-aided design systems,								
		with various types of software for								
		computer-aided design								
43		The course is aimed at students	6				v			v
		studying the basics of modeling								
		technological machines and								
		equipment, to gain practical skills								
		of working with computer graphics								
	Computer technologies	in the process of designing parts								
	for calculation, modeling	and assemblies, to form knowledge								
	and design	about trends in the development of								
		computer graphics, to form a								
		professional student's								
		consciousness. When studying the								
		discipline, students receive:								
		practical skills of working with								

		modern computer graphics										
		programs; master methods of using										
		computer graphics in the tasks of										
		the discipline; knowledge of the										
		theoretical foundations of the finite										
		element method; obtaining skills in										
		analyzing the results of computer										
		modeling and design; fundamentals										
		of system and automated modeling										
		and design of technical objects;										
		classification, technical										
		characteristics and capabilities of										
		various computer design systems										
		and database management systems.										
44		The concept of the essence and	6						v			v
		purpose of the mechanism. General										
		principles of designing										
		technological equipment.										
		Kinematic schemes of										
	Calculation and design	technological machines and										
	of technological	equipments, methods for obtaining										
	machines and equipment	new technical solutions in the										
	machines and equipment	design, construction of gearbox										
		housing parts; standard calculation										
		of mechanical gears, design of the										
		main elements of mechanical gears,										
		including using computer-aided										
		design methods										
		Cycle	of profile	e disci	plines	5						
		Uni	versity co	ompoi	nent					1		1
45		Wear and aging of technological	5				v			v		
	Repair of technological	machines and equipment. Design of										
	machines	repair production. Organization and										
		management of the										

		electromechanical service. Basic information on the methods of repair, improvement of technological equipment. Engineering support repair.								
		machines and units, instilling in students the practical skills necessary in the repair and maintenance of equipment for mining and metallurgical production. Worn parts recovery								
46	Instrumentation and automation of technological machines	technology Formation of the future specialist knowledge of the design of devices, their purpose and principles of operation. As well as special training of engineering and technical personnel with scientific and practical knowledge in the field of operation, as it solves relevant engineering and scientific problems in the field of quality, performance properties and rational use of fuels, oils, lubricants and technical fluids.	5			v	v			
47	Installation and exploitation of technological machines	Formation of the future specialist knowledge of the design of devices, their purpose and principles of operation. As well as special training of engineering and technical personnel with scientific and practical knowledge in the field of operation, as it solves relevant engineering and scientific problems	6		v			v		

		in the field of quality, performance									
		properties and rational use of fuels,									
		oils, lubricants and technical fluids									
48	Metall welding and	The course studies the physical	4	N	r						v
	ccutting	foundations of the metal welding									
		process; energy sources during									
		welding; electric arc. Classification									
		of welding arcs and their									
		characteristics; dynamic									
		characteristics of power sources;									
		transformers with increased and									
		normal scattering; welding									
		rectifiers; aggregates and									
		converters; multi-post power									
		sources of the welding arc;									
		auxiliary devices of power sources;									
		specialized power sources for									
		electroslag and plasma welding;									
		safety during operation of welding									
		power sources. General information									
		about welding materials.									
		Classification of welding materials.									
49	Technical diagnostics of	The course is aimed at studying the	4			V				v	
	technological equipment	theoretical foundations of technical									
		diagnostics and obtaining practical									
		skills in the use of non-destructive									
		testing methods to assess the									
		technical condition of technological									
		machines and equipment; to									
		familiarize students with the basics									
		of the theory of technical									
		diagnostics, types of technical									
		condition, controlled parameters,									
		technical diagnostics systems; to									

		study the physical foundations of non-destructive testing methods for detecting and diagnosing malfunctions of technological equipment; familiarization with equipment for non-destructive testing, test methods, acquisition of practical skills											
		Cycle	of profile	e disci	pline	5							
50		Co	mponent	of che	DICE						[
50	Transportation vehicles	vehicles. Technological schemes of transport. Basics of calculating transport vehicles. Railway transport. Automated system for the design of electric locomotive transport. Self-propelled transport. Scraper installation. Conveyor installation. Pneumo and hydrotransport installations. Pipeline container pneumatic conveying installations. Mechanization of loading and unloading and installation work. Vehicles on the surface of mines and mines. Technological complex surface. Constructions of transport vehicles										v	V
51	Hydraulic machines and compressors in the oil and gas industry	Acquisition of solid theoretical and practical knowledge of the designs and principles of operation of hydraulic machines, compressors, widely used in the transportation of	5						v				
		oil, petroleum products and gas											

		 through pipelines. General schemes of hydraulic machines and compressors. The principle of the volumetric, flow machines. Varieties of hydraulic and compressor machines. Theories of action and characteristics. Areas, features of application, regulation of operating modes 									
52	Lifting installations	 Acquisition of solid theoretical and practical knowledge of the designs and principles of operation of hydraulic machines, compressors, widely used in the transportation of oil, petroleum products and gas through pipelines. General schemes of hydraulic machines and compressors. The principle of the volumetric, flow machines. Varieties of hydraulic and compressor machines. Theories of action and characteristics. Areas, features of application, regulation of operating modes 	5				v				
53	Equipment for ore preparation	The course is aimed at training specialists in the field of operation of technological equipment for the preparation of ore raw materials, possessing a system of theoretical and practical knowledge, equipment and technology of the ore preparation process, having an idea of the purpose and role of preparatory processes in the	5				V		v		

		enrichment of minerals, methods of calculation of technological equipment, selection and technical and economic indicators of equipment, purpose, device, operation and operating conditions, as well as the basics of calculating ore preparation machines and equipment									
54	Non-standard equipment	Preparation of bachelors for independent production and technical activities at enterprises for the production and repair of technological equipment based on the development of theoretical and practical material for the design of non-standard equipment, the study of the basics of the design of technical objects, the acquisition of practical skills in the design of special technological equipment.	4				v		Y		
55	Design of experiments bench and field tests	The course provides for the essence and methodology of scientific research, hardware design of a full- scale experiment. Familiarity with modern methods of planning experiments and estimating the measurement error of experimental results; mastering the types of experimental tests, methods of processing test results, modern methods of assessing reliability based on test results (resource, research, etc.). As a result of	4					v			

		studying the discipline, methods of conducting experiments and types of tests are mastered to determine the resource and reliability of technological machines and									
		equipment used in the industry									
56	Friction and wear	Patterns of external friction and wear on rough surfaces, modern friction theories, methods for determining friction coefficients, calculation and prediction of wear rates; types, abrasive wear mechanism; the importance of lubricants and additives for friction and wear, methods for selecting materials for moving parts, methods for improving wear resistance, equipment used in studies of friction and wear, development directions.	6		v	v					
57	Lubrication of technological machines	The course is aimed at training specialists for production, design and research activities in the field of creation, improvement of lubrication systems and equipment, maintenance, modernization of technological equipment. The course is aimed at training specialists for production, design and research activities in the field of creation, improvement of lubrication systems and equipment, maintenance, modernization of technological equipment. The	6			v					v

		course covers: operational properties of technological machines; operational properties of elements of technological machines exposed to temperature, corrosion;								
		lubrication of technological								
		additives to lubricating oils:								
		greases; selection, supply and								
		methods of calculating lubricant								
		consumption								
58		The course is aimed at the	6		v					
		formation of students' knowledge in								
		the field of operation of								
		technological equipment of								
		industrial complexes, taking into								
		account the rational use and storage								
		of lubricants and special liquids, as								
		well as the organization of								
		lubricants, collection, regeneration								
		of oils and their storage at								
	Fuels, oils and special	enterprises. The objectives of the								
	liquids	discipline are: to provide								
		information on the nomenclature of								
		liquid mineral and synthetic oils,								
		plastic, solid, sealing, preservative								
		lubricants; to provide information								
		about the methods and systems of								
		lubrication of machines, issues of								
		organization of the lubrication								
		economy, collection, regeneration								
		of oils and their storage at								
		enterprises; to master the existing								

				 	 	-	-	 			-
		methods of assessing the quality of									
		lubricants and special liquids.									
59		The study of the discipline forms	5		v		v				
		students' ideas about the basics of									
		installation of compressor units and									
		hydraulic machines, about the									
		organization of the operation									
		system, factors affecting operating									
	Tashnalagu maintanana	conditions, as well as about modern									
	rechnology maintenance	technologies to improve operational									
	and repair of compressor	reliability. When studying the									
	units and hydraulic	discipline, the following are									
	machines	considered: general methods of									
		installation of compressor stations;									
		installation of technological									
		equipment of a gas turbine shop;									
		installation of equipment of gas									
		engine shops; installation of									
		auxiliary technological equipment									
60		Training of specialists for	5				v		v		
		production, design and research									
		activities in the field of creation,									
		improvement and operation of									
		mechanical equipment for smelting									
		processing of the metallurgical									
	Malting processing	cycle with knowledge of the									
	equipmen	scientific principles of the									
	equipmen	organization of technological									
		design. As a result of studying the									
		discipline, students master									
		advanced methods of operation of									
		mechanical equipment, the current									
		state and prospects for the									
		development of metallurgical									

		production; the main scientific and technical problems of operation of technological equipment of									
		metallurgical enterprises.									
61		The design of the wellbore	5				v		v		
		completed by drilling. Units of									
		capital and current repair of wells.									
		Equipment and tools for the									
		overhaul and maintenance of wells.									
	Oil and gas field	Equipment wells for various									
	machines and	methods of influence on the									
	machanisms	reservoir in order to increase its oil									
	meenamsms	recovery. Collection system,									
		preparation of well production.									
		Equipment for maintaining									
		reservoir pressure and oil									
		displacement from productive									
		formations									
62		Designation and classification	5				v		v		
		equipment of oil and gas pipelines.									
		Equipment, pump stations for									
	Machines and equipment	transportation of crude oil and									
	for gas and oil ninelines	petroleum products. Technological									
	for gas and on pipelines	scheme of binding equipment pump	1								
		and compressor stations.									
		Automation and control equipment									
		pump and compressor stations.									
63		Purpose: for students to master the	5					v			
		basic principles and methods of									
	Theory and practice of	project management, as well as									
	project management	develop the necessary skills for the									
		successful implementation of									
		projects in various fields of activity.									
		Contents: Students learn the									

		theoretical foundations of project management, including the concepts, principles, methods of planning, organizing, controlling, and completing projects.								
64	Dewatering, fan and pneumatic plants	The device is technologically important and large energy consumers in the mining industry: pumps, fans and compressors of various types, the main parameters and scope of these installations. Methods of design and installation of pumping stations, fan installations for main ventilation. Pipeline networks, their device and installation, auxiliary equipment, ensuring efficient and safe operation of pumping, fan and compressor units	5				v			
65	Dust-gas cleaning and recycling water supply of industrial enterprises	Studying the course gives students an idea of modern systems of dust and gas cleaning and recycling water supply of industrial enterprises. Contains basic information about the features of water supply of industrial enterprises. The systems and schemes of industrial water supply, methods and technologies of water treatment are considered, data on the design of installations for cooling recycled water and improving its quality, preventing suspension deposits and biological	5				v			

		fouling, scale formation and										
		corrosion in pipelines and										
		equipment are contained										
66		Principles of operation and device;	5					v		v		
		basics of their theory of calculation,										
		design and operation. Principles of										
		economic operation of modern										
		equipment overhaul wells.										
	Well overhaul equipment	Equipment used in the overhaul of										
	and installations	wells. Equipment for repair work										
		on the well. Equipment for the										
		collection and preparation of oil										
		and gas for transportation. Modern										
		methods of environmental										
		protection in the overhaul of wells										
67		Equipment and well workover	5					v			v	
		tools; overhaul technology for										
		operating and maintenance										
		conditions; their principles of										
		operation and device; basics of their	•									
	Engineering and wall	theory of calculation, design and										
	Engineering and wen	operation. New technological										
	workover technology	methods and technical means of										
		repair. Principles of economic										
		operation of modern equipment										
		overhaul wells; equipment used in										
		various methods of oil and gas										
		production										
68		The course is aimed at students	5			v	v					
		acquiring theoretical knowledge										
	Fundamentals of design	and practical skills on the basics of										
	of repair enterprises in	design and reconstruction of repair										
	the industry	enterprises of technical service of										
		the industrial complex. Objectives										

		of the discipline: study of the rules for designing technical service facilities of an industrial complex, substantiation of the production program of a service enterprise, design of production zones and auxiliary units, the basics of designing a construction part, design features of repair shops, technical and economic evaluation of design solutions	-							
69	Calculation and design of drilling equipment	The course is aimed at studying drilling machines and complexes that provide drilling of deep wells for oil and gas extraction from the Earth's interior. The program is focused on the training of a mechanical engineer and is aimed at an in-depth study of the physical foundations of the operation of drilling machines and equipment, as well as the design of new drilling equipment based on existing ones developed by world firms, the objectives of studying the discipline is to acquire in-depth knowledge in the field of professional activity	5				V			v
70	Calculation and design of oil and gas equipment	Questions of the theory and practice of designing machines and mechanisms, the peculiarity of designing typical types of oilfield equipment; optimization of equipment design using computer- aided design systems. Designing	5				v			v

		machines for the oil and gas industry is the basis for the development of this industry, it contributes to the development of design skills. Basic design techniques for developing parametric equipment for oil and gas production						
71	Projection of metallurgical machines	Training and preparation of specialists for production and research activities in the field of design of design developments and obtaining practical skills in designing typical and specific elements and assemblies of metallurgical machines using modern regulatory and technical documentation. This is due to the predominant use of specialists in industry as middle-level engineering and technical workers engaged in the creation, operation and repair of modern metallurgical machinery units.	5		V			
72	Construction of mining transport vehicles and fixed installations	The basic principles, the technique of constructing mining machines and stationary installations, the manufacturability of the design. Indicators of technological design. Required documents and their registration. The establishment of rational design parameters of mining machines and stationary installations. The basic principles	5		V			

		and methods of designing									
		technological machines Principles									
		for calculating design parameters									
		Construction of assembly units and									
		machine parts. Engineering design									
		of MM and SI									
72	Fundamentals of anargy	To form an idea of the general	5	**							
13	aving industry	nringinlag of developing on operation	5	v							
	saving moustry	principles of developing an energy									
		survey strategy, the modern									
		regulatory framework for energy									
		efficiency, methods for determining									
		regulatory and prospective									
		indicators of energy efficiency,									
		methods for confirming energy									
		efficiency indicators and									
		compliance with their regulatory									
		values, modern and promising									
		science-based technologies for									
		energy conservation, control and									
		improvement of energy quality,									
		including the use of renewable									
		energy sources									
74		Classification of working stands	5				v		v		
		and rolling mills. The parameters of									
		the rolling process. Calculation of									
		the rolling force. Moment and									
	F	power rolling. Determination of									
	Equipment 3-5	power of the electric drive.									
	redistribution	Workstations Bearings and pillows									
		for rolling rolls. Mechanisms and									
		devices for setting and balancing									
		rolls. Beds of working stands. Drive									
		rolls working stands. Gear stands.									

		Ingot trucks. Continuous hot and									
75			~								
/5		Basic terms and definitions of energy saving Energy saving in the	5	V	r						
		oil and gas industry. The main uses									
		of SFR Prospects for the									
	Energy-saving	development of unconventional									
	equipment and	energy sources Energy-saving									
	technologies in the oil	measures in the technology of the									
	and gas industry	oil and gas industry. The use of									
	and gas moustry	heat nump installations in the gas									
		and oil industry. Utilization and use									
		of SFR gas turbines at compressor									
		stations of main gas ninelines									
76		To form an idea of the general		x	,						
/0		principles of developing an energy		•							
		survey strategy the modern									
		regulatory framework for energy									
		efficiency methods for determining									
		regulatory and prospective									
		indicators of energy efficiency.									
	Fundamentals of energy	methods for confirming energy									
	saving in repair and	efficiency indicators and	5								
	service production	compliance with their regulatory									
		values, modern and promising									
		science-based technologies for									
		energy conservation, control and									
		improvement of energy quality.									
		including the use of renewable									
		energy sources									
77		To form an idea of the general	5						v		
	Fundamentals of	principles of developing an energy									
	Research and	survey strategy, the modern									
	Development	regulatory framework for energy									

		efficiency, methods for determining regulatory and prospective indicators of energy efficiency, methods for confirming energy efficiency indicators and compliance with their regulatory values, modern and promising science-based technologies for energy conservation, control and improvement of energy quality, including the use of renewable energy sources								
78	Technique of field experiment	The course is aimed at studying methods of measuring physical quantities, acquiring practical skills in the use of measuring instruments and experimental techniques characteristic of the study of the parameters of technological machines. The course gives students the knowledge necessary for further production, activity about the essence and methodology of scientific research, hardware design of a full-scale experiment As a result of mastering the discipline, the student will be able to independently prepare the equipment for conducting experimental research. Connect the assembled circuit and conduct experiments on existing equipment models.	5					v		

79		The development of the discipline	5		V	~		V	\sim			
		is aimed at acquiring knowledge										
		and skills for the selection, creation,										
		implementation and operation of										
		measuring installations and										
	Methods and means of	systems, test benches; knowledge										
	testing technological	of methods and measuring										
	machines	instruments; metrological										
		characteristics of measuring										
		instruments; organization of testing										
		and control activities in order to										
		assess the conformity of products										
		and quality indicators										

5. Curriculum of educational program

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEN

теу уни_{ва}

PD, UC

6

180

2/0/2

120

E

Installation and exploitation of

technological machines

TEC559

6

									58		50		50	1 1	50
	Total based on UNIVERSITY:	1012-10-11-13						30	28	27	33	29	31	33	27
AAP500	Military affairs	ATT	0												
	12-			M-10, M	odule of a	additiona	l types	of training	g						
ECA109	Final examination	FA	8												8
				M	-9. Modu	le of fina	l attesta	tion							
AAP183	Production practice II	PD, UC	3										3		
AAP102	Production practice I	PD, UC	2								2				
4311	Elective	PD, CCH	5	150	2/0/1	105	E								5
4310	Elective	PD, CCH	5	150	2/0/1	105	E								5
4309	Elective	PD, CCH	5	150	2/0/1	105	E								5
4308	Elective	PD, CCH	5	150	2/0/1	105	E							5	
4307	Elective	PD, CCH	6	180	2/1/1	120	E							6	
3303	Elective	PD, CCH	4	120	2/0/1	75	Е						4	1	
3302	Elective	PD, CCH	5	150	2/0/1	105	E						5		
TEC570	Technical diagnostics of technological	PD, UC	4	120	2/0/1	75	E								4
TEC566	Metall welding and ccutting	PD, UC	4	120	2/1/0	75	E	1					4		

	Number of credits for the entire per	iod of stud	ly				
	Cycles of disciplines	Credits					
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total		
GED	Cycle of general education disciplines	51		5	56		
BD	Cycle of basic disciplines		91	21	176		
PD	Cycle of profile disciplines		29	34	170		
	Total for theoretical training:	51	120	61	232		
FA	Final attestation	8			8		
	TOTAL:	59	120	61	240		

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol Ne<u>12, 14, 04</u> 202<u>4</u> y. Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol Ne <u>6</u> <u>19</u> <u>04</u> 202<u>4</u> y.

Decision of the Academic Council of the Institute of Energy and Mechanical Engineering. Protocol No 4 "19" 01 2014 y.

Vice-Rector for Academic Affairs

Director of Institute of E&ME

Head of department TM&E

Specialty Council representative from employers

R.K. Uskenbayeva K.K. Yelemessov K.K. Yelemessov A.T. Shakenov

KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY after K. SATBAYEY

UNTTUK TEXH ский т APBROVED Director of the Institute of E&ME elemessov 04 2024.

MAJOR ELECTIVE DISCIPLINES educational program for the 2024-2025 academic year admission Educational program6B07115 - Technological machines and equipment (by industry) Group of Educational programs B064 - "Mechanics and metal working"

Year of	Code of elective	Code of discipline	Name of discipline	Semestr	Cycle	Credits	Total hours	lec/lab/pr	(including SIWT) in
ruuy			M-7. Module of basic traini	ng					
			General technical training mo	dule					ý
		TEC485	Drilling machines and complexes	4	BD BD	5	150	2/0/1	105
		PED137	Technological lines and complexes of metallurgical production					2/0/1	
	3220	MIN173	Mining technology	6				1/0/2	
		MNG562	Legal regulation of intellectual property					2/0/1	
		TEC471	Technological processes in the oil and gas industry					2/0/1	
		TEC469	Pumps, fans, compressors					2/0/1	
3		TEC476	Organization of machine-building production in the industry	-				2/0/1	
		000175	A william transment equipment of metallurgical shore	-				2/0/1	
	3221	PED175	Auxiliary transport equipment of metallurgical snops	6				2/0/1	
	5221	TEC404	Technical audit					2/0/1	
		TEC477	Gas-pumping units					2/0/1	
		MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan					2/0/1	
	1	TEC552	Computer-aided design of technological machines		BD	6	180	1/0/3	120
4	4222	TEC550	Computer technologies for calculation, modeling and design	7				1/0/3	
		TEC551	Calculation and design of technological machines and equipment					1/0/3	
			M-8. Module of professional ac	ctivity					-
		1	Technology and Operations M	odule	-	1	1	0.00.0	1
		TEC466	Transportation vehicles	4				2/0/1	105 75 120
	3302	TEC127	Hydraulic machines and compressors in the oil and gas industry	- 6	PD	5	150	2/0/1	
3	1000000000	TEC114	Lifting installations	-	008.900	1.12	1.000	2/0/1	
		TEC484	Equipment for ore preparation				-	2/0/1	
	3303	TEC574	Non-standard equipment	6	PD	4	120	2/0/1	
-		TECS76	Design of experiments bench and field tests					2/0/1	
	4307	TECS/2	Friction and wear	7	PD	6	180	2/1/1	
	4507	TECS68	Euclide oils and special liquids	- ^				2/1/1	
		PED130	Technology maintenance and repair of compressor units and hydraulic muchinae		PD	5	150	2/0/1	105
		TEC455	Melting processing equipmen	1				2/0/1	
	4308	TEC479	Oil and gas field machines and mechanisms	7				2/0/1	
		TEC106	Machines and equipment for gas and oil pipelines					2/0/1	
		NSE185	Theory and practice of project management	1				2/0/1	
		PED431	Dewatering, fan and pneumatic plants		PD	5	150	2/0/1	105
12	1200	PED118	Dust-gas cleaning and recycling water supply of industrial enterprises					2/1/0	
4	4309	PED157	Well overhaul equipment and installations	°				2/0/1	
		PED454	Engineering and well workover technology	1				2/0/1	
		TEC418	Fundamentals of design of repair enterprises in the industry		PD PD	5	150	2/0/1	105
		PED170	Calculation and design of drilling equipment					2/0/1	
	4310	PED155	Calculation and design of oil and gas equipment	8				2/0/1	
		PED177	Projection of metallurgical machines					2/0/1	
		PED421	Construction of mining transport vehicles and fixed installations					2/0/1	
		TEC548	Fundamentals of energy saving industry					2/0/1	
	4311	TECI10	Equipment 3-5 redistribution	8				2/0/1	
		PED456	Energy-saving equipment and technologies in the oil and gas industry	-				2/0/1	
		TEC500	Fundamentals of energy saving in repair and service production		1		1	2/0/1	
		1	Module"R&D"	-		-	-	0.000	
-		PED445	Fundamentals of Research and Development		BD	5	150	2/0/1	105
3	3218	PED430	Technique of field experiment	- '			150	2/0/1	
	ITEC436	Methods and means of testing technological machines					1 2/1/0		

Credits numbers of elective disciplines over	the entire period of study
Cycle of disciplines	Credits
Cycle of basic disciplines (B)	21
Cycle of special disciplines (S)	35
Overall:	56

Decision of the Academic Council of the Institute E&ME. Protocol №4 or "19" 20 d4 y.

/ Head of the department TM&T

m K.K. Yelemessov

A.T. Shakenov

Representative of the Council from employers